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ABSTRACT

Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall

Measuring Mission (TRMM) space-based rain estimates, and, hence, quantitative evaluation of the GV

radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with

TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant

differences of concurrent radar–gauge rain rates exist at various time scales ranging from 5 min to 1 day,

despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates

and gauge point rain rates cannot be explained as due to radar error only. The error variance separation

method is adapted to partition the variance of radar–gauge differences into the gauge area–point error

variance and radar-rain estimation error variance. The results provide relatively reliable quantitative un-

certainty evaluation of TRMM GV radar-rain estimates at various time scales and are helpful to understand

better the differences between measured radar and gauge rain rates. It is envisaged that this study will

contribute to better utilization of GV radar-rain products to validate versatile space-based rain estimates from

TRMM, as well as the proposed Global Precipitation Measurement satellite and other satellites.

1. Introduction

The Tropical Rainfall Measuring Mission (TRMM) is

a satellite-based program to estimate global tropical

rainfall (Simpson et al. 1996; Kummerow et al. 1998). A

wealth of data have been obtained since the launch of

the TRMM satellite in November of 1997. The accuracy

of the satellite-based rain products, however, is affected

by discrete temporal sampling and remote spaceborne

rain retrieval algorithms. The TRMM ground validation

(GV) program was established to verify the satellite rain

products, which can be carried out by comparing the

TRMM products with ground observations from ground

sensors, such as rain gauges, radars, and disdrometers.

The GV radar-rain products play a crucial role in this

validation effort. TRMM Standard Product (TSP) 2A53,

an instantaneous GV radar rain-rate map, is often used

as a main tool for the validation analysis (Adler et al.

2000; Habib and Krajewski 2002; Datta et al. 2003; Wolff

et al. 2005). However, TSP 2A53 has its own quality is-

sues that must be quantified before it can be used to

properly validate the satellite rain estimates. The major

obstacle in evaluation of the quality of the 2A53 is the

lack of ‘‘ground truth’’ reference at the radar pixel scale.

The surface rainfall measurements from rain gauges are

customarily approximated as the ground truth to assess

and calibrate radar-rain estimates.

The rain gauge is a simple mechanical device that is

deployed on the surface to directly measure rainwater

entering the gauge in discrete quantities. For example,

Met One, a commonly used tipping-bucket (TB) rain

gauge, measures rainwater impinging on its 30.5-cm-

diameter collection orifice and entering into its 0.254-mm

bucket. The TB gauge subsequently gives the surface

rainfall amounts in a near-point area of 0.073 m2 with

the sampling resolution of 0.254 mm (0.01 in.). The radar,

in contrast, does not directly measure surface rainfall

amounts, but measures reflectivity factors aloft at its res-

olution cell on the order of 1–10 km2. The area-averaged

surface rainfall is subsequently estimated by converting

raw reflectivity using any number of reflectivity–rain-

rate (Ze–R) relationships. Even if both gauge near-

point measurements and radar area-averaged rainfall

estimates are assumed to be accurate, the large resolu-

tion difference of 7–8 orders of magnitude still obviously

causes problematic comparisons between the two sensors.
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Because gauges lack areal representativeness, the gauge

measurements cannot be directly treated as the ground

truth reference for the area-averaged rainfall. Therefore,

the large radar–gauge discrepancies cannot be treated as

radar-rain estimation error (Zawadzki 1975; Harrold

et al. 1974; Krajewski 1987; Kitchen and Blackall 1992;

Ciach and Krajewski 1999; Anagnostou et al. 1999;

Habib and Krajewski 2002; Habib et al. 2004).

For the purpose of decomposing radar–gauge differ-

ence variance into the radar-rain estimation error vari-

ance and the gauge representativeness error variance,

the general concept of the statistical error variance sepa-

ration was proposed by Barnston (1991) and Kitchen and

Blackall (1992). Barnston (1991) estimated the bias of

radar and gauge area average rainfall measurements over

relatively large domain sizes on the order of 100 km2.

Kitchen and Blackall (1992) investigated the gauge rep-

resentativeness problem in gauge–radar comparisons

at radar pixel scale. Ciach and Krajewski (1999) fully

formulated the concept as the error variance separa-

tion method (EVSM). Following the same concept,

Anagnostou et al. (1999) proposed a similar method

but applied it in the logarithmic domain. Habib and

Krajewski (2002) applied the EVSM formulated by

Ciach and Krajewski (1999) to the uncertainty analysis

of TRMM GV radar-rain maps for central Florida. Fisher

(2007) used the EVSM to establish an upper bound of

ground data uncertainty in the error decomposition of

regional-scale monthly precipitation estimates from the

TRMM satellite. These studies showed that significant

random errors existed between the rainfall estimates

from the radars and gauges and that the errors decreased

as the integration time scale increased.

The objective of this study is to evaluate the TRMM

2A53 radar-rain product using rain gauge measure-

ments. The ground rainfall data collected from a gauge

network deployed at the National Aeronautics and Space

Administration (NASA) Kennedy Space Center (KSC)

are compared with the concurrent overlapping radar-

based estimates. Section 2 gives a discussion of the gauge

and radar data employed in this study. Section 3 pro-

vides comparisons of gauge and radar rain-rate estimates.

Application of the EVSM to quantify the contributions

of gauge and radar error variances to the total radar–

gauge difference variance is provided in section 4. A

discussion of the results is given in section 5.

2. Gauge and radar-rain products

This study uses the radar-rain product 2A53 and

gauge-rain product 2A56 over the KSC area in the pe-

riod from 1 January to 31 December 2008. Figure 1

shows a map of the KSC gauge network along with the

2 km 3 2 km Cartesian grids of the 2A53 radar-rain

map. The dots denote locations of the individual gauges,

with their identification numbers indicated on the right.

As can be seen in Fig. 1, the gauges are approximately

evenly distributed across the study area. The distances

between the gauges range from approximately 2 to

32 km, with the average of 13 km. A Weather Surveil-

lance Radar-1988 Doppler (WSR-88D) named KMLB

at 28.11338N latitude and 80.65428W longitude in Mel-

bourne, Florida, is approximately 50 km south of the

center of the KSC gauge network. The gauges are TB

type with a bucket size of 0.254 mm, and are connected

to an automatic data collection system. There are 31

active TB gauges regularly reporting rain tips at a sam-

pling resolution of 1 s.

Data from a given TB gauge are subject to a number

of possible error sources such as 1) inadequate calibra-

tion before and after deployment and 2) mechanical

and electrical problems due to the harsh environment

of coastal Florida. In addition, gauge-data error sources

can result from the sampling mechanism, wind effects,

FIG. 1. Aerial map of KSC gauge network along with 2 km 3

2 km Cartesian grids of TSP 2A53 radar-rain map. The dots denote

locations of the individual gauges, with their identification numbers

indicated on the right. The grids that do not contain gauges are not

used in the analysis. The KMLB radar is about 50 km south of the

center of the KSC gauge network.
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off-level gauge placement, funnel surface wetting and

evaporation, animal and human interference, and so on.

Obtaining reliable measurements of point rainfall from

gauges poses difficult challenges (Sieck et al. 2007). In this

study, unreliable gauge tip records are detected and re-

moved through careful quality control of the gauge data.

These quality-controlled tip records are then interpolated

into 1-min rain rates, known as TSP 2A56, by using

a cubic spline–based algorithm described in Wang et al.

(2008). Additional quality control is performed to filter

out ‘‘bad gauges’’ on a monthly basis by comparing 2A56

rain rates with radar-reflectivity data over the locations of

rain gauges, as described by Amitai (2000). Only reliable

2A56 rain rates from KSC gauges that passed these

quality-control steps are used in this study to compare

with the rain rates from radar-rain product 2A53.

The radar-rain product evaluated in this study is TSP

2A53, an instantaneous radar rain-rate map in Cartesian

coordinates with a 2-km horizontal resolution at the

1.5-km constant-altitude plan position indicator (CAPPI)

level. The radar rain rates are generated using Ze–R

relations derived from the window probability matching

method (WPMM; Rosenfeld et al. 1994). The WPMM

statistically matches quality-controlled reflectivities ex-

tracted from radar volume scans to gauge-estimated rain

rates (2A56), such that the monthly probability distri-

bution of the radar rain rates above the gauge is equal

to that of the gauge rain rates. The derived 2A53 in-

stantaneous rain-rate maps are available approximately

every 5 min, corresponding to the volume scan interval

of the KMLB radar (Wolff et al. 2005). Rain accumula-

tions at time scales of 5 min or larger are obtained by in-

tegrating the 2A53 maps over the time difference between

consecutive radar scans. If the time difference exceeds

12 min, the 2A53 maps are integrated forward for 5 min.

Note that a total of 214 gauges within a 150-km range

of the KMLB radar from three separate networks are

used in the WPMM. Besides 31 gauges from the KSC

network, 125 gauges are from the South Florida Water

Management District network and 58 gauges are from

the St. Johns Water Management District network. The

percentage of the KSC gauges among total gauges used

in the 2A53 generation is 14.5%. Although the KSC gauge

data are not independent of the 2A53 rain rates, they can

be used in partially dependent algorithm and technique

sanity checks for the long-term radar-rain estimation.

Dependent gauges can be also used in the uncertainty

evaluation of radar-rain estimates (Ciach and Krajewski

1999). In this study, only 31 KSC gauges are employed to

evaluate the uncertainty of radar-rain estimates.

The gaps in the series of radar scans can cause nega-

tive bias in radar-rain integration. During data pro-

cessing, a gap is defined as a time difference between any

two consecutive scans that is greater than 12 min. This

gap definition is chosen because consecutive scans of-

ten occur 11–12 min apart when the KMLB radar op-

erates in clear-air mode. Table 1 lists monthly KMLB

radar gap statistics and missing-rain percentages due to

the gaps in 2008. The missing-rain percentages are esti-

mated from the percentages of gauge rainfall during the

radar gaps. The monthly total radar gap length varies

from 208 to 7144 min, with the largest gap percentage

(16%) reported in July when the KMLB radar experi-

enced an antenna problem. There are a total of 416 gaps

that add up to a total length of 23 292 min during the

entire period of 2008, which accounts for 4.42% of the

period. The individual gap length ranges from 13 to

1945 min, with a mean of 55.99 min. The gaps falling in

rainy periods result in about 3.49% underestimation in

yearly rainfall accumulation. This percentage reduces to

0.74% if July is excluded from the calculation. About

35.97% of monthly rain accumulation in July was missed

because of the radar data gaps that were often within the

rainy periods. The radar gaps during dry periods do not

result in missing rain, such as in February and December

as indicated in Table 1. In general, the radar data gap is

not a serious problem in regard to the overall uncer-

tainty of radar-rain estimation. Nevertheless, all radar

gaps are excluded in our comparisons of radar and gauge

rainfall, as well as in the error variance analysis.

3. Comparisons of radar and gauge rainfall

a. Overall bias

To evaluate the overall radar-rainfall error, we define

the overall bias as the ratio of the radar–gauge rainfall

difference to gauge rainfall:

TABLE 1. Monthly KMLB radar gap statistics and missing-rain

percentages due to the gaps in 2008. The missing-rain percentages

are estimated from the percentages of gauge rainfall during the

radar gaps.

Month No. of gaps

Gap length

(min)

Gap percentage

(%)

Missing rain

(%)

Jan 13 794 1.78 0.11

Feb 8 208 0.50 0.00

Mar 164 3504 7.85 1.51

Apr 138 3289 7.61 0.36

May 13 1401 3.14 0.05

Jun 6 509 1.18 1.12

Jul 27 7144 16.00 35.97

Aug 12 537 1.20 1.24

Sep 9 3683 8.53 0.76

Oct 11 1030 2.31 0.02

Nov 6 788 1.82 0.31

Dec 9 405 0.91 0.00

Tot 416 23 292 4.42 3.49
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where Gi is the cumulative rainfall from a gauge over

a period of a month or year, Ri is the cumulative rainfall

from a radar 2 km 3 2 km grid corresponding to where

a gauge is located in the same period, and N is the

number of quality-controlled gauges in the KSC net-

work (N varies from month to month). Only grids con-

taining gauges that passed the quality control are used in

the calculation of Eq. (1). Gauge data during radar data-

gap periods are not included in the computation of the

cumulative rainfall.

Figure 2 shows the cumulative rainfall averaged from

all gauges (N�1�N

i51Gi) and radar grids (N�1�N

i51Ri)

over the gauges during the 1-yr period of 2008. An aver-

age KSC gauge measured 1560.0 mm of rainfall, whereas

the KMLB radar estimated 1474.5 mm of rainfall over the

same domain in 2008. The radar overall bias relative to

gauges, as defined in Eq. (1), is 25.48%. The correlation

coefficient between the daily rainfall from the radar and

gauge is 0.97. Table 2 lists monthly KMLB radar and

KSC gauge rainfall, as well as the radar-rainfall bias

relative to gauge rainfall. The monthly gauge rainfall

ranges from 15.5 mm in December to 678.4 mm in Au-

gust. The radar rainfall displays similar features. Note

that gauge data during the radar gaps are excluded from

the computation of the rain accumulation. As a result,

both radar and gauge yearly rain accumulations in Table 2

and Fig. 2 are underestimated by about 3.49% because of

the radar gaps, as suggested in Table 1. It should be

mentioned that the KSC gauges were used in the WPMM,

and therefore the overall bias could be larger if inde-

pendent gauges were available for this analysis. Never-

theless, the overall quantitative agreement between the

KSC gauge and KMLB radar rain rates is good, con-

sidering the much larger bias of the radar-rain maps due

to radar calibration, estimation of the low-altitude ver-

tical profile of reflectivity, and the Ze–R relationship

(Houze et al. 2004; Wang and Wolff 2009). This confirms

that the overall long-term bias is an insignificant source

of uncertainties in the radar-rain maps (Kitchen and

Blackall 1992). The overall long-term bias of radar-rain

products can be easily removed by adjusting the radar-

rain total to the gauge-rain total. This needs to be done

prior to the EVSM application.

b. Scatter comparisons

Detailed comparisons between the gauge and radar

rain rates can be performed based on pairs of concur-

rent radar–gauge observations using scatterplots. Since

TSP 2A53 radar-rain maps are instantaneous estimates

sampled at approximately a 5-min interval, we integrate

radar-rain maps to six time scales: 5, 10, 15, 30, and

60 min and 1 day, respectively. In a similar way, gauge

rain rates are also accumulated to these scales. Scatter-

plots in Fig. 3 are constructed using pairs of rain rates

from all gauges and their corresponding radar grids at six

time scales over the period of 2008. The data pairs are

plotted only when both radar and gauge reported non-

zero rainfall so that data gaps and large amounts of

nonrainy periods are excluded from the comparisons.

Both radar and gauge rain rates are plotted in the same

logarithmic scale for all time scales for easy compari-

sons. The vertical binning of gauge rain rates can be seen

in Fig. 3. This is due to the fact that the TB gauge always

records rain amount in increments of 0.254 mm (Wang

et al. 2008). The radar rain rates appear to be binned, as

evident by the horizontal lines, which is due to the pre-

cision of 0.1 mm h21 in the 2A53.

TABLE 2. Monthly KMLB radar and KSC gauge rainfall, and the

radar rainfall bias relative to gauge rainfall in 2008.

Month Radar (mm) Gauge (mm) Bias (%)

Jan 108.23 135.85 220.33

Feb 52.73 48.47 8.78

Mar 30.88 31.04 20.51

Apr 69.86 72.71 23.92

May 20.29 29.37 230.92

Jun 98.33 134.64 226.97

Jul 57.98 58.93 21.60

Aug 589.72 678.42 213.07

Sep 204.15 162.73 25.45

Oct 175.84 137.95 27.47

Nov 53.20 54.34 22.10

Dec 13.23 15.50 214.64

Tot 1474.45 1559.96 25.48

FIG. 2. Cumulative rainfall averaged from all gauges (solid line)

and from radar grids over the gauges (dotted line) during the 1-yr

period of 2008.
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FIG. 3. Scatterplots of radar and gauge rain rates for time scales of 5, 10, 15, 30, and 60 min and 1 day. Both radar

and gauge rain rates are plotted in the same logarithmic scale for all time scales. The correlation coefficient is shown

at the top left of each panel.
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At shorter time scales of 5–30 min, significant scatter

exists at both high and low rain rates, and the difference

between radar and gauge rates can be beyond 6100

mm h21. The discrepancy is mainly due to different

temporal and spatial samplings of the two sensors. The

KMLB radar scans at approximately a 5-min interval

over a much larger area; as a result, it may miss or av-

erage out rain peaks. A gauge samples rainfall in a near-

point area relative to the radar pixel. Given the large

spatial–temporal variability of subtropical rainfall, the

gauge may record an amount of rainfall that is signifi-

cantly different from the pixel-averaged radar rain-

fall. The scatter decreases as the time scale increases

from 5 min to 1 day. At the 60-min and 1-day scales, the

scatter is relatively smaller in comparison with 5–15-min

scales. Correspondingly, the correlation coefficient be-

tween the gauge and radar rain rates increases from 0.60

at the 5-min scale to 0.93 at the 1-day scale.

c. Frequency distribution comparisons

The scatterplots in Fig. 3 provide direct comparisons

of GV radar and gauge rain rates, which are admittedly

noisy. An alternative method of comparison is to ana-

lyze the frequency distributions of the differences (radar

minus gauge) of the radar–gauge rain rates at various

time scales (Fig. 4). Each distribution in Fig. 4 is con-

structed using all rainy radar–gauge data pairs covering

the 1-yr study period and is binned at 0.5 mm h21 in-

tervals. All of these distributions appear relatively sym-

metrical with respect to their modes and have shapes of

approximate Gaussian distribution with means ranging

from 21.4 to 20.1 mm h21 and standard deviations

from 12.9 to 0.5 mm h21. Note that the much larger

frequency scale is used in plotting the bottom-right

panel, and ranges of rain-rate differences in all six panels

are plotted from 240 to 40 mm h21 for clear exhibition

of general distributions. The radar–gauge rain-rate dif-

ferences at the 5-min scale are distributed with the

widest range, from 2196.4 to 156.7 mm h21. The dif-

ferences at 1-day scale are distributed at a narrower

range than those at other scales. The range decreases

with the increasing time scale from 5 min to 1 day, as

indicated by the standard deviation in each panel. The

coefficient of variation, defined as the ratio of the stan-

dard deviation to the mean, changes from 29.2 to 25.0,

indicating significant difference between concurrent ra-

dar and gauge rain rates, especially at short time scales.

This feature is consistent with the scatterplots in Fig. 3.

Although the mode of each frequency distribution is

approximately zero, extreme differences do exist, espe-

cially at 5- and 10-min time scales—a predictable result

of the different temporal and spatial samplings of the

radar and gauges as discussed earlier.

d. Gauge and radar zero-rainfall percentages

A rain gauge measures rainfall falling into its near-

point circular orifice at discrete time intervals whereas

the radar estimates rainfall at a much larger spatial

resolution during its scans. Rain often occurs with in-

termittences in space and time. A few nonrainy areas

may be embedded in a larger rainy area of a radar grid

size; rain stoppages may exist in a heavy-rain event.

Hence, it is frequently observed that radar reports rain

activity whereas gauges record zero rainfall. The oppo-

site situation sometimes occurs in short-lived or fast-

moved storms because of discrete radar volume scans.

The horizontal rain advection and vertical echo varia-

tion from radar observation height to the surface can

also result in the radar missing rain. Figures 5a and 5b

show the percentage of gauge zero-rainfall occurrences

conditional on radar-rainfall existence in the 2 km 3

2 km radar grid over the gauge, and the percentage of

radar zero-rainfall occurrences when the gauge inside

the radar grid recorded nonzero rainfall. A general fea-

ture of Figs. 5a and 5b is that both percentages of con-

ditional gauge and radar zero-rainfall occurrences are

lower at larger time scales. At the radar scan frequency

or the time scale of 5 min, there is an approximately

44% chance that a single gauge does not record rainfall

falling into a 2 km 3 2 km area. This percentage of

conditional gauge zero-rainfall occurrence drops slowly

from 44% to 36% when the time scale increases from

5 min to 1 day, whereas the percentage of conditional

radar zero-rainfall occurrences drops much faster.

Similar studies about the probability of conditional

zero-rainfall occurrences can be found in Habib and

Krajewski (2002) and Villarini et al. (2008) where both

analyses were based on gauges only, and the probability

was defined as the percentage of zero-rain occurrences

at one gauge conditional on rain existence at any other

gauges within a given area. As compared with our anal-

ysis, Habib and Krajewski (2002) reported a relatively

conservative result whereas Villarini et al. (2008) ob-

served a higher probability. The differences are mainly

due to different gauge densities, grid sizes, and rainfall

regimes in these three studies.

Analogous to the percentage of conditional zero-rain

occurrences, the percentage of gauge missing-rainfall

amount can be approximately estimated as the ratio of

the estimated radar rainfall when a particular gauge

measured no rain to the total radar rainfall in the radar

grid over that gauge. Similarly, the percentage of radar

missing-rainfall amount can be defined as the ratio of

gauge-measured rainfall when the radar measured no

rain to the total gauge rainfall. The percentage of gauge

missing rainfall is about 30% at the 5-min scale and
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FIG. 4. Frequency distributions of radar–gauge rain-rate differences for time scales of 5, 10, 15, 30, and 60 min and

1 day. Each distribution is constructed using all rainy radar–gauge data pairs covering the 1-yr period of 2008 and is

binned at 0.5 mm h21 intervals. The mean and standard deviation of radar–gauge rain-rate differences are shown in

each panel.
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drops to about 25% at the 1-day scale (Fig. 5c). In com-

parison with the gauge missing rainfall, the radar missing

rainfall is in much smaller percentages (Fig. 5d). In gen-

eral, these percentages in Figs. 5a–d indicate the impor-

tance and difficulty of radar-rainfall evaluation using

gauge-rainfall measurements.

4. Error variance separation method

a. Decomposition of radar–gauge difference variance

From the analysis in section 3, significant differences

of concurrent radar–gauge rain rates exist mainly because

the KMLB radar and KSC gauges sample extremely

variable rainfall at different spatial and temporal reso-

lutions. Given the huge resolution difference of 7–8

orders of magnitude in area, poor direct comparisons of

radar and gauge rain rates can be expected. Therefore, it

is fundamentally difficult to directly use gauge point

measurements as the ground truth for the radar area-

averaged rainfall estimates. Many researchers have re-

alized that the gauge–radar difference cannot be treated

as radar-rainfall estimation error (e.g., Zawadzki 1975;

Krajewski 1987; Kitchen and Blackall 1992; Habib and

Krajewski 2002). A systematic statistical approach was

developed by Ciach and Krajewski (1999) to filter out

the uncertainty of gauge measurements that resulted

from a lack of area representativeness. The basic idea of

the EVSM is to separate the radar–gauge difference

variance into two terms: gauge representativeness error

variance and radar-rainfall estimation error variance.

In a given integration time interval, similar to Ciach

and Krajewski (1999) and Habib and Krajewski (2002),

FIG. 5. (a) Percentage of gauge zero-rainfall occurrences conditional on radar rainfall exis-

tence in the 2 km 3 2 km radar grid over the gauge. (b) Percentage of radar zero-rainfall

occurrences in the 2 km 3 2 km radar grid conditional on rainfall existence at the gauge inside

the radar grid. (c) Percentage of gauge missing rainfall. (d) Percentage of radar missing rainfall.
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the variance of radar–gauge rain difference can be de-

scribed as follows:
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Here Rr is the 2A53 rain rate over a given radar grid; Rg

is the 2A56 rain rate from a gauge located in the radar

grid; and Rt is the unknown true area-averaged rain rate

over the same grid. For an integration time interval T

and a radar grid domain A, Rt is defined as

R
t
5

1

T

ðT

0

1

A

ð ð
A

R(x, y, t) dx dy

� �
dt, (3)

where R(x, y, t) is the unknown true instantaneous rain

rate at a given time t and a given point with Cartesian

coordinates (x, y) in the continuous radar grid domain A.

The terms var(Rr 2 Rt) and var(Rg 2 Rt) in Eq. (2) are

the variance of radar-rain estimation error and variance

of gauge representativeness error, with respect to

the true area-averaged rain rate Rt. If the radar and

gauge errors are assumed to be uncorrelated (Ciach and

Krajewski 1999), the covariance term cov(Rr 2 Rt, Rg 2

Rt) becomes 0, and Eq. (2) can be simplified as

var(R
r
� R

g
) 5 var(R

r
� R

t
) 1 var(R

g
� R

t
). (4)

Equation (4) means that the radar–gauge differences are

attributed not only to radar estimation error but also to

gauge representativeness error. By reforming Eq. (4), the

variance of radar-rain estimation error can be written as

var(R
r
� R

t
) 5 var(R

r
� R

g
)� var(R

g
� R

t
). (5)

Based on Eq. (5), we can assess the variance of radar-

rain estimation error by subtracting the variance of gauge

representativeness error from the variance of radar–gauge

differences. The variance of radar–gauge differences in

Eq. (5) can be easily computed from n pairs of gauge and

radar rain rates using following formula:

var(R
r
� R

g
) 5

1

n
�

n

i51
[R

r
(i)� R

g
(i)]2. (6)

Equation (6) is derived after the radar long-term bias is

removed, which can be carried out by adjusting radar-

rain integration to the gauge-rain accumulation over the

entire data period. After removing the radar long-term

bias and assuming that the long-term gauge accumula-

tion is free of any errors, the true area-averaged mean

rain rate m is the same as the gauge or radar mean rain

rate:

m 5
1

n
�

n

i51
R

r
(i) 5

1

n
�

n

i51
R

g
(i) 5

1

n
�

n

i51
R

t
(i). (7)

The second term var(Rg 2 Rt) on the right-hand side of

Eq. (5), often referred to as the area–point variance,

needs to be carefully addressed.

By assuming second-order homogeneity of rainfall

within the domain A and following Ciach and Krajewski

(1999), the area–point variance can be expressed in terms

of the correlation function:

var(R
g
�R

t
) 5 s2

g 1� 2

A

ð ð
A

r(x, y, x
g
, y

g
) dx dy

�

1
1

A2

ð ð
A

ð ð
A

r(x, y) dx dy

� �
dx dy

�
, (8)

where sg is the variance of gauge rain rates, r is the

spatial correlation function, x and y are the same as in

Eq. (3), and xg and yg denote the gauge location in the

radar grid. According to Eq. (8), estimation of the area–

point variance requires a detailed rainfall correlation

structure at small scales.

b. Correlation structure

This section provides the analysis of small-scale cor-

relation structure for the purpose of estimating the area–

point variance using Eq. (8). The correlation coefficient

is calculated for each pair of time series of nonzero

gauge rain rates at a given time scale using standard

Pearson product–moment formula. Figure 6 displays the

scatter of correlation coefficients versus distances between

gauges at accumulation time scales ranging from 1 min

through 1 day. Each point represents a correlation co-

efficient for a pair of gauges separated by a certain distance.

As expected, Fig. 6 displays a clear feature that the overall

correlation level increases with increasing time scale and

decreases with increasing gauge separation distance.

Although the correlation coefficient is commonly used

to characterize the complicated rainfall spatial structure,

accuracy and reliability associated with its estimation

are not completely resolved (Stedinger 1981; Shimizu

1993; Lai et al. 1999; Ciach and Krajewski 2006). The

correlation using the traditional Pearson formula can be

overestimated in some cases for which rain rates follow

nonnormal distributions (Kowalski 1972). Stedinger (1981)

showed that unbiased correlations could be estimated

using logarithm-transformed data. Shimizu (1993) and

Habib et al. (2001a) further studied this issue and pro-

posed similar transformation-based procedures to better

estimate the correlations. However, Ciach and Krajewski
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FIG. 6. Scatterplots of spatial correlation coefficients as a function of gauge separation distances estimated from

pairs of gauge-rain accumulations at time scales of 5, 10, 15, 30, and 60 min and 1 day. The exponential fits for the

estimated coefficients are also presented (solid line).
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(2006) and Villarini et al. (2008) investigated the distri-

bution of rain rates and found that the transformation-

based procedure proposed by Habib et al. (2001a) was

not suitable for their studies. We performed the loga-

rithmical transformation on the radar and gauge data

and then estimated the correlation coefficient using trans-

formed data. The result shows the correlation slightly in-

creases after the transformation. In comparison with the

transformation-based estimation, we believe the tradi-

tional Pearson formula does not overestimate the true

correlation in this study. Therefore, we directly use the

traditional Pearson formula in the correlation analysis.

The following two-parameter exponential model with

the so-called nugget effect is chosen to approximate the

spatial correlation function r over separation distance

d between two gauges:

r(d) 5 r
0

exp(�d/d
0
). (9)

In Eq. (9), parameter r0 is the immediate correlation

jump or nugget according to the geostatistical literature

(Cressie 1993), and (1 2 r0) is called the local decorre-

lation that represents the field correlation drop at small

distances. The decorrelation can be caused by the small-

scale variability of rainfall or random errors. The pa-

rameter d0 is the correlation distance that characterizes

the correlation decay. The nugget effect model is often

applied in statistical correlation to analyze small-scale

variability (Ciach and Krajewski 1999, 2006; Habib and

Krajewski 2002; Krajewski et al. 2003).

Different procedures can be considered to estimate

parameters r0 and d0. Ciach and Krajewski (1999) adop-

ted a simple best fit to the correlation structure that is

presented by Krajewski and Duffy (1988) in a simulation

study. A much larger correlation distance d0 relative to

the radar grid size was obtained; thus the exponential

part in Eq. (9) was close to 1 and the correlation struc-

ture was dominated by the correlation jump r0. Based on

the assumption of the second-order homogeneity, r0 was

estimated using the method of moments. However, this

procedure oversimplified the correlation function be-

cause of a lack of dense gauges in their study; as a result,

the area–point variance was overestimated.

Another procedure often applied in the least squares

curve-fitting problem, such as estimating parameters r0

and d0 in Eq. (9), is the Levenberg–Marquardt algo-

rithm (LMA; Press et al. 1988). The LMA is an iterative

technique that optimizes the parameters so that the sum

of the squares of the residual errors becomes minimal.

Habib and Krajewski (2002) used the LMA to obtain

function parameters with reasonable results. In some

cases, however, the LMA is very sensitive to the initial

guess of the parameters and converges only if the initial

guess is already somewhat close to the final solution. The

procedure applied in this study to find the initial guess

uses the linear least squares method. The curve-fitting

problem in Eq. (9) can be linearized if a logarithm of

both sides of Eq. (9) is taken. Thus, the initial guess of

parameters r0 and d0 in Eq. (9) can be estimated by the

linear least squares method from all 465 pairs of r and

d among 31 KSC gauges for each time scale. Then, the

LMA is implemented using the resultant initial guess.

The LMA fitted function is presented in the inserted text

in each panel of Fig. 6. A general feature of the corre-

lation function shown in Fig. 6 is that the correlation

and correlation distance increase as the integration time

scale increases. At the 1-day scale, the parameter d0

reaches a large value of 55.02 km; therefore the expo-

nential part in Eq. (9) is close to 1 and the correlation

structure is close to linear. The parameter r0 represents

the correlation coefficient at zero-separation distance.

The value of r0 is less than 1 in all panels of Fig. 6, which

could be attributed to the small-scale rainfall variability

and gauge measurement errors. When the integration

time scale increases to 30 min or longer, at which scale

the gauge-sampling errors are negligible (Wang et al.

2008; Habib et al. 2001b), r0 reaches a value of 0.969–

0.995, which represents the natural variability at very

small scales. At the separation distance of 2 km, the

correlation coefficient estimated from Eq. (9) is 0.619,

0.691, 0.739, 0.841, 0.893, and 0.959 for the time scales of

5, 10, 15, 30, and 60 min and 1 day, respectively. This

coefficient decreases to 0.074, 0.081, 0.092, 0.115, 0.204,

and 0.577 as the separation distance increases to 30 km.

The rapid drop of the correlation level at relatively short

distance is consistent with the fact that short-lived and

localized rainfall systems often occur in the KSC area.

c. EVSM implementation

The estimation of parameters r0 and d0 in Eq. (9) is

crucial in deriving the correlation structure at small

scales. The area–point variance in Eq. (8) can be esti-

mated by using the derived correlation structure. To do

so, the gauge separation distance in Eq. (9) needs to be

expressed as

d 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x

1
� x

2
)2

1 (y
1
� y

2
)2

q
(10)

in the Cartesian coordinate system, where (x1, y1) and

(x2, y2) are two gauge positions. The distance between

any two given points can be similarly expressed. By

applying this expression into Eq. (9) and then sub-

stituting Eq. (9) into Eq. (8), Eq. (8) can be analytically

integrated and thus var(Rg 2 Rt) can be computed. It is

clear that the area–point variance var(Rg 2 Rt) is only
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dependent on the relative gauge location inside the ra-

dar grid.

As discussed earlier, the variance of radar–gauge dif-

ference var(Rr 2 Rg) can be estimated using Eq. (6).

Once var(Rr 2 Rg) and var(Rg 2 Rt) are obtained, the

radar error variance var(Rr 2 Rt) can be easily deter-

mined as the difference between these two variances

according to Eq. (5). Thus, the entire EVSM imple-

mentation is completed.

d. EVSM results

Figure 7 displays the results of various statistics used

in the error separation analysis in the form of box plots

at time scales from 5 min to 1 day. The box plot presents

a quick sketch of the distribution of the underlying data

at 31 gauges. The interquartile range extending from

the lower quartile (25th) to the upper quartile (75th) is

plotted as the black box, and the median is denoted as

the white bar inside the box in Fig. 7. The vertical line

(‘‘whisker’’) extends from both ends of the box to the

maximum and minimum. Figures 7a–7c illustrate the

normalized standard errors of radar and gauge rain rates

and radar–gauge rain-rate differences with respect to

the true rain rates. These normalized standard errors are

defined as the square roots of the variances from Eqs.

(5), (8), and (6), divided by the gauge mean rain rate,

respectively. The normalization makes the standard er-

rors with different magnitudes dimensionless, and thus

FIG. 7. Box plots of various statistics used in the error separation analysis for 31 gauges at 5-, 10-, 15-, 30-, and

60-min and 1-day scales. The interquartile range extending from the lower quartile (25th) to the upper quartile (75th)

is plotted as the black box, and the median is denoted as the white bar inside the box. The vertical line represents

whiskers extending from both ends of the box to the maximum and minimum. (a) Normalized standard errors of

radar rain rates. (b) Normalized standard errors of gauge rain rates. (c) Normalized standard errors of radar–gauge

rain-rate differences. (d) Normalized standard deviations of radar rain rates. (e) Normalized standard deviations of

gauge rain rates. (f) Correlation coefficients between radar and gauge rain rates. The normalized standard error or

deviation is defined as the square root of the variance divided by the gauge mean rain rate.
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comparisons among different time scales become mean-

ingful. Standard deviations of gauge and radar rain rates

are also normalized by the same gauge mean. Normal-

ized standard deviations of radar (Fig. 7d) and gauge

(Fig. 7e) rain rates do not greatly fluctuate with time

scales. However, all three normalized standard errors

regularly drop with increasing time scale, and the gauge

error (Fig. 7b) filters out faster than the radar error

(Fig. 7a) through time averaging. The standard error of

radar–gauge rain-rate differences (Fig. 7c) is significantly

greater than the radar error (Fig. 7a). Whereas the stan-

dard error of radar–gauge rainfall differences (Fig. 7c)

decreases with increasing time scale, the correlation co-

efficient (Fig. 7f) between radar and gauge rain rates

increases. At the 1-day scale, the median correlation

coefficient reaches about 0.93. The correlation at this

level appears to be so large that the difference between

radar and gauge rain rates should be fairly small. How-

ever, Fig. 7c shows that the normalized standard error of

radar–gauge rain-rate differences is still as high as 70%

at the 1-day scale. This demonstrates that the high cor-

relation does not guarantee the minor difference be-

tween two random variables such as rain rates from the

radar and gauge, and therefore only considering the

correlation can be misleading sometimes.

One observation that can be extracted from Fig. 7a is

that the median error of radar rain-rate estimation is

greater than 100% at the 5-min scale and drops to about

80% at the scales of 15–30 min. Even at the 1-day scale,

the error stays at a level of about 60%. This exhibits that

large improvements of the radar-rain product are still

possible, which could be done through finer data sam-

pling, more rigorous data quality control, algorithm re-

finement, and utilization of other concurrent observations

such as rain measurements from disdrometers, vertical

profilers, and so on.

To understand better the error variances separated by

the EVSM, we present Fig. 8 in the form of ratios of

error variances. Figure 8a depicts the ratio of radar error

variance [Eq. (5)] with respect to the overall radar–

gauge difference variance [Eq. (6)] as a function of the

time scale. The ratio of the gauge error variance [Eq. (8)]

to radar–gauge difference variance [Eq. (6)] is displayed

in Fig. 8b. Figure 8c is for the ratio of the radar-to-gauge

error variance. The upper whisker is truncated at the

1-day scale in Fig. 8c. The extreme whisker is due to

small error variances at several gauges and is not con-

sidered to be representative. At short time scales of

5–15 min, the gauge representativeness error, expressed

as the median variance ratio, contributes about 45% to

the radar–gauge differences (Fig. 8b). When the time

scale increases beyond 30 min, the gauge error (Fig. 7b)

decreases much faster than the radar errors (Fig. 7a) so

that the radar error becomes 2–4.5 times as large as the

gauge error (Fig. 8c). Notice that the ratio in Fig. 8b

decreases from 45% at 5–15-min scales to 20% at the

1-day scale, which suggests that the area–point error can

be reduced by time averaging but still contributes an

important part of the radar–gauge differences.

A variety of previous relevant studies have been car-

ried out to quantify the contribution of the gauge repre-

sentativeness error to the total radar–gauge differences.

FIG. 8. Box plots of error variance ratios for 31 gauges at 5-, 10-, 15-, 30-, and 60-min and 1-day scales. (a) The ratio

of radar error variance to radar–gauge difference variance. (b) The ratio of gauge error variance to radar–gauge

difference variance. (c) The ratio of radar error variance to gauge error variance.
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Kitchen and Blackall (1992) estimated that gauge rep-

resentativeness error was about 50%–80% for instanta-

neous and hourly rainfall at the grid size of 3 km 3

3 km. Anagnostou et al. (1999) showed that the gauge-

rainfall uncertainty contributed up to 60% of the vari-

ance observed in radar–gauge differences for hourly

rainfall at 2–4-km grid resolution. However, those two

analyses were conducted after logarithmic transforma-

tions of ratios of radar–gauge pairs, and then the un-

certainty levels equivalent to results without logarithmic

transformation were approximately estimated. Thus, cau-

tion must be taken when comparing their results with the

results of this study.

Ciach and Krajewski (1999) reported that the ratio of

gauge error variance to the radar–gauge difference vari-

ance was on the order of 60%–70% at 5–15-min scales.

This ratio is relatively larger than our result (45%). As

discussed in section 4b, their ratio was overestimated,

which resulted from the oversimplified correlation func-

tion because of the lack of gauge measurements at the

scale of the radar grid in their study. When the time scale

increases to 1 day, the ratio of gauge error variance re-

mains at about 20% for both studies. At this scale, the

correlation distance d0 in Eq. (9) is as large as 55.02 km

(Fig. 6); therefore the correlation structure is more

dominated by the correlation jump r0. The approxima-

tion in Ciach and Krajewski (1999) could be applicable

at the 1-day scale in our study, and both results are

consequently consistent.

5. Concluding remarks

TRMM GV radar rain rates are spatiotemporally

matched and intercompared with the quality-controlled

gauge rain rates over the KSC area for the period of

2008. It is found that the overall bias of radar-rain esti-

mates relative to gauge measurements over the 1-yr

period is about 25.48%. However, significant differ-

ences of concurrent radar–gauge rain rates exist at var-

ious time scales from 5 min to 1 day, which is mainly

due to different spatial and temporal sampling between

radar and gauge observations. The KMLB radar in-

stantaneously samples rainfall at scan intervals of about

5 min with range resolutions of 0.25 km and variable

vertical resolutions. The KSC gauges measure amounts

of accumulated rainwater falling into their near-point

orifices in increments of 0.254 mm. Rain rate can often

change by a factor of 10 over distances of 2 km or during

time intervals of several minutes (Joss and Waldvogel

1990). Therefore, the gauge measurements cannot be

representative of true rain rates in the entire area be-

neath the radar-sampled volume. In a similar way, in-

stantaneous radar observations in any given sampling

volume may not be representative of rain intensities

during the intervals between volume scans. In addition,

rain gauges may suffer systematic, mechanical, and

electrical problems (Wang et al. 2008), whereas the ra-

dar can be subjected to hardware calibration and sta-

bility issues, nonuniform beam filling, and attenuation

effects (Wang and Wolff 2009). Moreover, algorithm-

caused rain estimation biases could be introduced by

the cubic-spline method employed in the gauge-rain

interpolation and the Ze–R relationships used in the

radar-rain estimation. All of these factors contribute to

differences in the comparisons of radar–gauge rain rates.

After the overall bias is removed, the radar–gauge

difference variance is separated into the gauge area–point

error variance and radar-rain estimation error variance.

The area–point error in rain gauge rainfall, expressed

as median variance ratio, contributes about 45% of the

variance in radar–gauge differences at 5–15-min scales

and decreases to 20% at the 1-day scale. An adequately

dense arrangement of rain gauges under the entire ra-

dar umbrella would be expected to improve gauge area

representativeness. The radar-rain product could be im-

proved through finer data sampling, more rigorous data

quality control, algorithm refinement, and utilization

of other concurrent information such as rain measure-

ments from disdrometers, vertical profilers, and so on.

This study is conducted for the purpose of providing

the uncertainty evaluation of radar rain-rate estimates

as a TRMM GV effort. The results are helpful to better

utilize GV radar-rain products to validate versatile space-

based rain estimates from TRMM, as well as the pro-

posed Global Precipitation Measurement satellite and

other satellites.
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